

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Discrete Mathematics (20HS0836)

Course & Branch: CSE , CSIT,CIC,AI&ML

Year & Sem: II - B.TECH & II-Sem

UNIT-I Graph Theory

1	a) Explain indegree and out degree of a graph. Also explain about the adjacency	[L2][CO1]	[6M]
	matrix representation of graphs. Illustrate with an example?		
	b) Draw the graph represented by given adjacency matrix	[L2][CO1]	[6M]
	$\begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 2 & 1 \end{bmatrix}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}$		
2	a) Show that the maximum number of edges in a simple graph with n vertices is	[L2][CO1]	[6M]
	n(n-1)		
	2		
	b) A graph G has 21 edges, 3 vertices of degree 4 and the other vertices are of	[L3][CO1]	[6M]
	degree 3.Find the number of vertices in G?		
3	a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does	[L3][CO1]	[6M]
	the graph have ?		
	b) Show that in any graph the number of odd degree vertices is even	[L2][CO1]	[6M]
4	a) Define isomorphism. Explain Isomorphism of graphs with a suitable example	[L2][CO1]	[6M]
	b)Identify whether the following pair of graphs are isomorphic or not?		
		[L2][C01]	[6M]
	v_1 v_2 v_1' v_2' v_2'		
	V_{4} V_{7} V_{3} V_{4}' V_{7}' V_{3}' V_{3}' V_{3}' V_{3}' V_{3}' G_{1}' V_{3}'		
5	a) Show that the two graphs shown below are isomorphic ?	[L2][CO1]	[6M]
	(b) a ' b '		
	\mathbf{V}		
	b) Give an example of a graph which is Hamiltonian but not Eulerian and vice	[L2][CO1]	[6M]
1		1	

Course Code: 20HS0836

R20

6	a) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian	[L2][CO1]	[6M]
	cycle.		
	b) State Euler's formula and Handshaking theorem	[L1][CO1]	[6M]
7	a)Define planar graph and Hamiltonian graph with examples	[L1][CO1]	[6M]
	b)Let G be a 4 – Regular connected planar graph having 16 edges. Find the number	[L3][CO1]	[6M]
	of regions of G.		
8	a) Explain about complete graph & complete bipartite graph with example.	[L2][CO1]	[6M]
	b) Explain the Rooted tree and Spanning tree with an example .	[L2][CO1]	[6M]
9	a)Find the chromatic polynomial & chromatic number for K _{3,3}	[L3][CO1]	[6M]
	b)Explain graph coloring and chromatic number. Give an example	[L2][CO1]	[6M]
10	Explain Depth-First-Search, Breadth-First-Search Algorithm	[L2][CO1]	[12M]

R20 UNIT –II Mathematical Logic

1	a) Explain the Connectives & their truth tables .	[L2][CO2]	[6M]
	b) Define Converse, Inverse & Contrapositive with examples.	[L1][CO2]	[6M]
2	a) Construct the truth table for the following formula $\neg(\neg P \lor \neg Q) \lor (R \rightarrow Q)$	[L3][CO2]	[6M]
	b) Construct the truth table to Show that $\neg P \land (Q \land P)$ is a contradiction.	[L3][CO2]	[6M]
3	a) Define NAND, NOR & XOR and give their truth tables.	[L1][CO2]	[6M]
	b)Show that $(P \rightarrow Q) \rightarrow Q$ $\Rightarrow P \lor Q$ without constructing truth table	[L2][CO2]	[6M]
4	a) Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$	[L2][CO2]	[6M]
	b) Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow Mand \neg M$	[L2][CO2]	[6M]
5	a) Show that the following set of premises are inconsistent.	[L2][CO2]	[6M]
	$P \to Q, P \to R, Q \to \sim R, P.$ b) Show that $(P \lor Q) \to R \equiv (P \to R) \land (Q \to R)$	[L2][CO2]	[6M]
6	a) What is principle disjunctive normal form? Obtain the PDNF of $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$	[L5][CO2]	[6M]
	b) What is principle conjunctive normal form? Obtain the PCNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$	[L5][CO2]	[6M]
7	a) Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF	[L5][CO2]	[6M]
	b) Define Maxterms & Minterms of P & Q & give their truth tables	[L2][CO2]	[6M]
8	a) Show that $\sim P$ is a valid conclusion from the premises	[L2][CO2]	[6M]
	$\sim (P \land \sim Q)$, $\sim Q \lor R$, $\sim R$ b) Define Quantifiers and types of Quantifiers with examples.	[L1][CO2]	[6M]
9	a) Use indirect method of proof to show that $(\forall x)(P(x)) \leftarrow Q(x)) \rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$	[L2][CO2]	[6M]
	b) Show that $(\exists x) M(x)$ follows logically from the premises $(\forall x)(H(x) \rightarrow M(x))$ and $(\exists x)H(x)$	[L2][CO2]	[6M]
10	a) Show that $(\exists x)(P(x) \land Q(x)) \Longrightarrow (\exists x)P(x) \land (\exists x)Q(x)$	[L2][CO2]	[6M]
	b) Show that $(\forall x)(P(x) \rightarrow Q(x)) \land (\forall x)(Q(x) \rightarrow R(x)) \Rightarrow (\forall x)(P(x) \rightarrow R(x))$	[L2][CO2]	[6M]

R20 UNIT –III

Relations , Functions & Algebraic Structures

4			F / 3 / 7
1	a) Define a binary relation. Give an example.Let R be the relation from the se	t [L3][CO3]	[6M]
	A = {1, 3, 4} on itself and defined by R = { $(1, 1), (1, 3), (3, 3), (4, 4)$ } then	1	
	Find the matrix of R ,draw the graph of R	•	
	b) If R be a relation in the set of integers Z defined by		
	$R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6}\}$ then show that R is an		[6M]
	equivalence relation.		
2	a) Let A = { 1,2,3,4} and R = { (1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),	[L2][CO3]	[6M]
	(4,4) Show that R be an equivalence relation & Determine A/R.		
	b) Let $A=\{1,2,3,4,5,6,7\}$, determine a relation R on A by		[6M]
	$aRb \Leftrightarrow 3 \text{ divides}(a-b)$, show that R is an equivalence relation.		
3	Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion relation on the elements of P(A).Draw the Hasse diagram of (P(A), \subseteq) for i) A = { a }	n [L2][CO3]	[12M]
4	 ii) A = { a ,b } iii) A = { a,b,c } iv) A = { a,b,c,d }. a) What is a compatability relation? Explain the procedure to find the maximal 	1 [L2][CO3]	[6M]
	compatibility blocks. b) Varify $f(x) = 2x + 1$, $g(x) = x$ for all $x \in R$ are bijective from $R \to R$.		
	b) Verify $f(x) = 2x + 1$, $g(x) = x$ for an $x \in R$ are objective from $R \to R$	[L4][CO3]	[6M]
-			
5	a) Let $f: A \to B$, $g: B \to C$, $h: C \to D$ then show that $ho(gof) = (hog)of$	[L2][CO4]	[6M]
5	a) Let $f: A \to B$, $g: B \to C$, $h: C \to D$ then show that $ho(gof) = (hog)of$ b) If $f: R \to R$ such that $f(x, y) = 2x + 1$ and $g: R \to R$ such that $g(x) = \frac{x}{3}$ then verify that $(gof)^{-1} = f^{-1}og^{-1}$	[L2][CO4] [L4][CO4]	[6M] [6M]
5	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. 	[L2][CO4] [L4][CO4] [L1][CO3]	[6M] [6M] [6M]
5	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H 	[L2][CO4] [L4][CO4] [L1][CO3] H [L2][CO3]	[6M] [6M] [6M] [6M]
5 6 7	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as 	[L2][CO4] [L4][CO4] [L1][CO3] H [L2][CO3] [L2][CO4]	[6M] [6M] [6M] [6M] [6M]
5 6 7	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4]	[6M] [6M] [6M] [6M] [6M]
5 6 7	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the 	[L2][CO4] [L4][CO4] [L1][CO3] H [L2][CO3] [L2][CO4] e [L2][CO4]	[6M] [6M] [6M] [6M] [6M]
5 6 7	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 	[L2][CO4] [L4][CO4] [L1][CO3] H [L2][CO3] [L2][CO4] e [L2][CO4]	[6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below also let P = {1,2,3} and addition be a binary operation on 'p' is given below 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a,b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below also let P = {1,2,3} and addition be a binary operation on 'p' is given below show that (S,*) & (P,⊕) are isomorphic. 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below also let P = {1,2,3} and addition be a binary operation on 'p' is given below show that (S,*)& (P,⊕) are isomorphic. 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] /. [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below also let P = {1,2,3} and addition be a binary operation on 'p' is given below show that (S,*) & (P,⊕) are isomorphic. 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] 7. [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]
5 6 7 8	 a) Let f: A → B, g: B → C, h: C → D then show that ho(gof) = (hog)of b) If f: R → R such that f(x, y) = 2x + 1 and g: R → R such that g(x) = x/3 then verify that(gof)⁻¹ = f⁻¹og⁻¹ a) Define and give an examples for group, semigroup, & abelian group. b) Show that the necessary and sufficient condition for a non – empty subset I of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ €H a) Prove that the set Z of all integers with the binary operation *, defined as a*b = a+b+1, ∀a, b ∈ Z is an abelian group. b) Show that the set of all positive rational numbers forms an abelian group under the composition defined by a*b = (ab) / 2 a) Let S = {a,b,c} and let * denotes a binary operation on 'S' is given below also let P = {1,2,3} and addition be a binary operation on 'P' is given below show that (S,*)&(P,⊕) are isomorphic. 	[L2][CO4] [L4][CO4] [L1][CO3] [L2][CO3] [L2][CO4] e [L2][CO4] /. [L2][CO4]	[6M] [6M] [6M] [6M] [6M] [6M]

Course Code: 20HS0836

ourse	e Code: 20HS0836 R20		
	b) On the set Q of all rational number operation * is defined by	[L2][CO4]	[6M]
	a * b = a + b - ab, Show that this operation Q forms a commutative monoid.		
9	a) Show that the set $\{1,2,3,4,5\}$ is not a group under addition and multiplication	[L2][CO4]	[6M]
	modulo 6.		
	b) Show that the binary operation * defined on (<i>R</i> ,*) where $x * y = x^y$ is not	[L2][CO4]	[6M]
	associative.		
10	a)Show that the set of all roots of the equation $x^4 = 1$ forms a group under	[L2][CO4]	[6M]
	multiplication.		
	b) Explain the concepts of homomorphism and isomorphism of groups with	[L3][CO4]	[6M]
	examples		

UNIT-IV Elementary Combinatorics

1	a) How many ways can we get a sum of 8 when two indistinguishable dice are	[L2][CO5]	[6M]
	rolled?	[L3][CO5]	[6M]
	b) How many different license plates are there that involve 1,2or 3 letters followed by 4 digits ?		
2	a) Enumerate the number of non negative integral solutions to the inequality	[L3][CO5]	[6M]
	$x_1 + x_2 + x_3 + x_4 + x_5 \le 19.$		
	b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each	[L3][CO5]	[6M]
	(i) $x_i \ge 2$ (ii) $x_i > 2$		
3	a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no repetitions are allowed?	[L3][CO5]	[6M]
	b) Find the co-efficient of (i) $x^3 y^7 in(x+y)^{10}$ (ii) $x^2 y^4 in(x-2y)^6$	[L3][CO5]	[6M]
4	a) Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways can it be formed if at least one woman is to be included?	[L3][CO5]	[6M]
	b) Find the number of arrangements of the letters in the word ACCOUNTANT.	[L3][CO5]	[6M]
5	a) The question paper of mathematics contains two questions divided into two	[L3][CO5]	[6M]
	groups of 5 questions each. In how many ways can an examinee answer six		
	b) How many permutations can be formed out of the letters of word "SUNDAY"? How	[L3][CO5]	[6M]
	many of these (i) Begin with S? (ii) End with Y? (iii) Begin with S & end with Y?		
6	(iv) S &Y always together?	[] 3][CO5]	[6M]
U	many of them begin with C and end with R? how many of them do not begin	[L5][005]	
	with C but end with R?		
	b) Out of 9 girls and 15 boys how many different committees can be formed each	[L3][CO5]	[6M]
7	consisting of 6 boys and 4 girls?	[] 3][CO5]	[6M]
/	a) Find the coefficient of (1) $x^2y^2z^2$ in $(2x - y + z)$ (11) x^2y^2 in $(x - 3y)$ x^3y^3 b) Find how many integers between 1 and 60 that are divisible by 2 non by 2 and		
	b) Find now many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5. Also determine the number of integers divisible by 5 not by 2, not by 3.	[L3][CO5]	[6M]
8	a) Out of 80 students in a class, 60 play foot ball, 53 play hockey and 35 play both	[L3][CO5]	[6M]
	the games. How many students (i) do not play of these games? (ii) Play only		
	hockey but not foot ball.	11 211 005	
	b) A Survey among 100 students shows that of the three ice cream flavours vanilla, chocolate, and straw herry 50 students like vanilla 43 like	[L3][CO5	[6]/1]
	chocolate, 28 like straw berry, 13 like vanilla and chocolate 11 like chocolate and		
	straw berry,12 like straw berry and vanilla and 5 like all of them.		
	Find the following.		
	1. Chocolate but not straw berry		
	 Chocolate and shaw berry but not vanifia Vanilla or chocolate but not straw berry 		
9	a) Explain Pigeon hole principle and give an example	[L3][CO5]	[6M]
	b) Find the minimum number of students in a class to be sure that 4 out of them		
	are born on the same month.?	[L3][CO5]	[6M]

Г

Т

10	a) Applying pigeon hole principle show that of any 14 integers are selected from	[L2][CO5]	[6M]
	the set $S = \{1, 2, 3 25\}$ there are atleast two whose sum is 26. Also write a		
	statement that generalizes this result.		
	b) Show that if 8 people are in a room, at least two of them have birthdays that	[L2][CO5]	[6M]
	occur on the same day of the week.		

R20 UNIT-V Recurrence Relation

1	a) Solve $a_n = a_{n-1} + f(n)$ for $n \ge 1$ by using substitution method.	[L3][CO6]	[6M]
	b) Determine the coefficient of x^{20} in $(x^3 + x^4 + x^5 + \dots)^5$	[L3][CO6]	[6M]
2	a) Determine the sequence generated by (i) $f(x) = 2e^x + 3x^2$ (ii) $f(x) = e^{8x} - 4e^{3x}$.	[L3][CO6]	[6M]
	b) Find the sequence generated by the following generating functions		[6M]
	(i) $(2x-3)^3$ (ii) $\frac{x^4}{1-x}$		[0]11]
3	a) Solve $a_n = a_{n-1} + 2a_{n-2}, n \ge 2$ with the initial conditions $a_0 = 0, a_1 = 1$	[L3][CO6]	[6M]
	b) Solve $a_{n+2} - 5a_{n+1} + 6a_n = 2$ with the initial conditions $a_0 = 1$, $a_1 = -1$	[L3][CO6]	[6M]
4	a)Solve the R.R $a_{n+2} - 2a_{n+1} + a_n = 2^n$ with initial conditions $a_0 = 2, a_1 = 1$	[L3][CO6]	[6M]
	b) Using generating function to solve $a_n = 3a_{n+1} + 2$, $a_0 = 1$	[L3][CO6]	[6M]
5	a) Solve the following $y_{n+2} - y_{n+1} - 2y_n = n^2$	[L3][CO6]	[6M]
	b) Solve $a_n - 5a_{n-1} + 6a_{n-2} = 1$	[L3][CO6]	[6M]
6	a) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ using generating function.	[L3][CO6]	[6M]
	b) Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$	[L3][CO6]	[6M]
	for $n \ge 2$ and $a_0 = -3, a_1 = -10$		
7	a) Solve the recurrence relation $a_n = a_{n-1} + \frac{n(n+1)}{2}$	[L3][CO6]	[6M]
	b) Solve $a_k = k(a_{k-1})^2$, $k \ge 1$, $a_0 = 1$	[L3][CO6]	[6M]
8	a) Solve $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5 \& a_2 = 3$	[L3][CO6]	[6M]
	b) Solve $a_n = 3a_{n-1} - a_{n-2}$ with initial conditions $a_1 = -2 \& a_2 = 4$	[L3][CO6]	[6M]
9	a) Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4^n$	[L3][CO6]	[6M]
	b) Solve $a_n = a_{n-1} + 2a_{n-2}$ $n \ge 2$ with the initial condition $a_0 = 2$, $a_1 = 1$	[L3][CO6]	[6M]
10	a) Solve $a_n - 5a_{n-1} + 6a_{n-2} = 2^n$, $n \ge 2$ with the initial conditions	[L3][CO6]	[6M]
	$a_0 = 1, a_1 = 1$. Using generating functions.		
	b) Solve $a_n - 4a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0, a_1 = 1$	[L3][CO6]	[6M]

PREPARED BY: Dr.R.LAKSHMI DEVI , P. SASIKALA ,K .SUBHASHINI